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Abstract 

The purpose of this study is to identify patterns of student thinking errors in 
constructing mathematics proof. Therefore, the study employed a mixed-method 
approach, combining both quantitative and qualitative paradigms. The subjects of this 
study were second-generation mathematics education students at Wisnuwardhana 
University and Kanjuruhan University, Indonesia. The results obtained showed that the 
pattern of students’ thinking errors in the construction of mathematical proof was due 
to insufficient initial knowledge about the definition of proof, and difficulties in 
connecting the concepts of rational numbers when operating two rational numbers. 
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Introduction  

The importance of mathematics proof has been the subject of review by a number of 
scholarly experts such as Dickerson (2008), who stated the essential role of mathematics 
proof because proof is the basis of and an inseparable part of mathematics. Also, Blanton 
and Stylianou (2003) and Samkof, Lai, and Weber (2012) stated that students need to 
improve their knowledge in the construction of mathematics proof. Additionally, Cirillo 
(2009) and Köğce, Aydın, and Yıldız (2010) stated the assumption that proof is considered an 
essential component for working, communicating, and understanding mathematics in depth. 
Therefore, students must possess the ability to construct and understand mathematical 
proofs as it is not otherwise possible to learn mathematics to any significant degree without 
such proficiency. Students’ ability to complete proof is related to thinking, and mathematics 
proof is at the core of mathematical thinking (Cheng & Lin, 2009). 

Mathematics proof is formal and deductive, and a formal written proof represents the 
final stage of mathematical thinking. Tall (2008a, 2008b) developed a three-way theory of 
mathematical thinking used to describe student thinking in the construction of mathematical 
proof, namely (1) “embodied,” the existence of real interactions that are developed based 
on experience, (2) “symbolic,” symbolic manipulation that functions well as formal processes 
and concepts, and (3) “builds a system,” which is based on formal evidence in order to 
construct a coherent theory. 

The basic educational course that can be used to construct proof in mathematics 
education is calculus. In Indonesia, almost all students enrolled in the mathematics 
education department learn calculus during the first semester of their university education. 
If students can learn to master how to understand mathematical proof, they can go on to 
construct proof to an advanced level of mathematics. However, if students experience 
difficulties and make errors in constructing a first-level mathematical proof, then it will 
negatively impact on the next proof material, for example, proof in real analysis and 
algebraic proof. Therefore, if the initial error is not resolved, it will impact on the next 
mathematical proof. The learning of proof is a simple concept that can lead students to go 
on to develop more complex mathematical proofs (Weber & Alcock, 2004). Researchers 
have examined the difficulties experienced by students and their thinking processes in the 
construction of mathematical proofs. The results of such research (e.g., Alcock, 2010; 
Batanero, Godino, & Roa, 2004) have shown that the difficulties students experience when 
writing proof are due to deficiencies in their understanding of mathematical concepts. 
Furthermore, the failure of students to construct mathematical proof lies in not being able 
to correctly apply their knowledge as a strategy for resolving mathematical proofs (Samkof 
et al., 2012). 

Student difficulties experienced in the construction of mathematical proof often 
manifest in the form of errors (Prayitno, Rossa et al., 2018; Prayitno, Setyowati et al., 2018), 
with student errors in mathematical proofing seen as a reflection of their thinking. If student 
errors in mathematical proofs are not prevented, then it will undoubtedly impact on the 
student’s thinking when faced with more advanced mathematical proofs. Therefore, the 
current study aims to identify error patterns in students’ thinking in the construction of 
mathematical proofs.  
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Methodology 

The approach applied in the current study was that of a mixed-methods research that 
combined both quantitative and qualitative approaches. The quantitative approach 
processed data related to the degree to which students made mistakes in mathematical 
proofs, while the qualitative approach was conducted in order to trace how students’ errors 
occurred in the construction of mathematical proofs. 

Data was collected by assigning proof problems to students, and then requiring them to 
solve them by thinking aloud (Prayitno, 2016). The research was conducted in three stages, 
with data collection as the first stage in which the researcher recorded the students’ 
behaviors when working on proofing problems in order to learn how they constructed 
mathematical proofs. Where an error was made in the proofing exercise, then the type of 
error was grouped accordingly in order to build evidence for the identification of patterns 
that formed from the students’ errors. 

The population of this study was formed by second generation mathematics education 
students at two higher education institutions located in Malang, Indonesia, namely 
Wisnuwardhana University and Kanjuruhan University. The collected data was in the form of 
student work, interviews conducted with the students, and field notes taken by the 
researcher. The collected data were then analyzed by reading the data in full, and then 
coding and interpreting the data in order to draw conclusions (Creswell, 2009). 

Results and Discussion 

In the proof of real numbers, two constructions were applied. In the first, the students 
were tasked with proving rational numbers, while the second involved the proofing of odd 
and even numbers. On the questions about the proofing of rational numbers, the majority 
(66%) of students experienced some degree of difficulty and produced errors. The proof 
question tasked to the students was as follows: 

Suppose a rational number ௔
௕

, with a and b as integers and ܾ ≠ 0. 
Prove that the sum of the two rational numbers is rational 

 
In resolving such a proof, many of the students responded based on rational numbers 

using the analogy of numbers. In this case, the students interpretation of the rational 
number with ହ

଺
 or ଵ

ଷ
. When there were statements about two rational numbers, the students 

directly operated the two rational numbers. In this case, some of the students wrote 
ହ
଺

+ ହ
଺

= ଵ଴
଺

 (see Figure 1). Likewise, other students assumed that proving the number of two 

rational numbers is rational can be proven by ଵ
ଷ

+ ଶ
ହ

= ଵଵ
ଵହ

.  
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Figure 1. Student Work (S1); Proving the Sum of Two Rational Numbers 

 
The students began their proof by thinking about what is known to them, namely the 

rational number ଶ
௕
, with ܾ ≠ 0 and with a and b as integers, and then adding them together 

as ௔
௕

+ ௔
௕

= ଶ௔
௕

. In this step, the students were unable to provide the right reasoning that ଶ௔
௕

 is 
a rational number by providing answers that were considered absolute. The following 
excerpt demonstrates this case: 

 
P : Was ଶ௔

௕
 a rational number? 

S1 : No, because the real number is ௔
௕

, while 2 is a natural number. 

Therefore, ଶ௔
௕

 is not a rational number. 
 

The student assumed that ଶ௔
௕

 was not a rational number, because numerically ଶ௔
௕

 
consists of a natural number (i.e., 2) and a rational number (௔

௕
). This demonstrated the 

student’s error in thinking about rational numbers, having misunderstood the definition of 
rational numbers (௔

௕
; a and b integers). If they explored in depth that 2a is an integer because 

2 and a are integers, they would deduce that ଶ௔
௕

 is of course a rational number. Another 

inability to understand the definition of rational numbers was indicated by specifying ܽ =  5 
and ܾ =  6. 

In the next verification step, the students’ thought that ௔
௕

 could be replaced with ହ
଺
, 

thinking that the rational numbers were defined as integers 5 and 6. In the next process, 
they continued by writing ହ

଺
+ ହ

଺
= ଵ଴

଺
, because 10 and 6 are integers and 6 is not the same as 

zero, therefore, ଵ଴
଺

 was included as a rational number. Thus, the students concluded that a 
number formed from two rational numbers was a rational number. In this case, the students 
attempted a proof of rational numbers by presenting examples of a number, assuming that 
the examples could resolve the proof. From their way of thinking, the students inability to 
understand the definition of rational numbers was clearly seen. The students’ errors in 
constructing mathematical proof also occurred in the form of other examples (i.e., ହ

଺
). Thus, 

the case was used in compiling the mathematical proof. As a verification process, the 
verification is only valid for ହ

଺
, but some students did not understand that this proof applies 

in general An example of the errors that the students made in mathematical proof 
construction are shown in Figure 2. 
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Figure 2. Student Work (S2); Proving the Sum of Two Rational Numbers 

 
In the process of proof, two numbers were rational, and the students thought of the 

two rational numbers, namely ௔
௕

 and ௖
ௗ

. In the next process, the students assumed 

ܽ =  1, ܾ =  3, ܿ =  2 and ݀ =  5. In this example, the students assumed that both ଵ
ଷ
 and ଶ

ହ
 

were rational numbers. Although the answer was correct, the students did not understand 
the general mathematical process of proving rational numbers. In this step, the students did 
not fully understand the mathematical proof, as the following excerpt indicates. 

 
P : If a = -5, b = -1, c = 0, and d = -2, is it still valid to proof that two 

rational numbers formed other rational numbers? 
S2 : Hmm [the student seemed to think for a long time], rational 

numbers form ௔
௕

, if a = -5 and b = 1 means a / b = -5 while c = 0 

and d = -2, which means that ௖
ௗ

 = 0 becomes -5 + 0 = -5, so it is 
not rational. 

P : How are you sure it is not rational? 
S2 : Because the end result is not ௔

௕
. 

The excerpt from this interview shows that student S2 only understood the rational 
number ௔

௕
. In other words, the student understood the rational numbers as ଶ

ଷ
 or ଵ

ହ
, but was 

unable to form rational numbers (as in -5 or 0 are rational numbers) because -5 is ିହ
ଵ

, while 

0 = ଴
ଵ
 or ଴

ଶ
. 

In the process of completion, the student only understood that ଵ
ଷ
 and ଶ

ହ
 were rational 

numbers. Consequently, the student added the two numbers resulting in 5 + ଺
ଵହ

= ଵଵ
ଵହ

. 

Because the student produced ଵଵ
ଵହ

, they concluded ଵଵ
ଵହ

 to be a rational number and at the 
same time answer the proof. Based on this way of thinking, it appears that the student then 
experienced an inability to understand the definition of rational numbers. At the same time, 
the student did not understand the definition of mathematical proof. In the student’s 
understanding of the definition of rational numbers, they were unable to numerically 
interpret the form of a / b. The student only understood that ଵ

ଶ
 or ହ

ଵ଴
 were rational numbers, 

while 2 or 0 whose divisors were 1 were not rational numbers.  

Overall, the students were found to be weak in their proofing abilities. When faced with a 
problem of proof, the students would directly equate to a number. Errors in compiling the proof also 
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occurred for other students. In collecting evidence, they assumed that ௔
௕

 was an irrational number, as 
shown in Figure 3. 

 
Figure 3. Student Work (S3); Proving the Sum of Two Rational Numbers 

To prove that two rational numbers are rational, the student applied indirect proof; 
assuming that ௔

௕
 was an irrational number, and that ௔

௕
 ×  ܽ = ܾ. In this case, the student 

experienced errors in the completion process (௔
௕

 ×  ܽ = ܾ). However, even if we multiply ௔
௕

 
with a result ܽଶܾ, such an error in operation results in successive errors in the next step. 
Although the thinking of the student in the next step was quite logical, the results obtained 
were still incorrect. The student thought that ௔

௕
+ ܾ = ௔

௕
. In this result also, the student 

seemed unable to operate rational numbers. Even if we are consistent with the sum 
operation of rational numbers, it should be ௔

௕
+ ܾ = ௔௕మ

௕
. The results of ௔

௕
+ ܾ = ௔

௕
 show that 

the students thought they should compare to the left side. When clarified by the 
researchers, student S3 answered as follows: 

 
P : What is ௔

௕
+ ܾ? 

S3 : ܽ
ܾ + ܾ =

ܾܽଶ

ܾ  

P : How do you get ௔
௕

+ ܾ = ௔
௕

? 
S3 : Because I changed b = 0. So it’s true that ௔

௕
= ௔

௕
. 

 
From these answers, it can be seen that the student claimed that b = 0. If we consider 

their assumption that ܾ ≠ 0, this is a contradiction in the assumptions made in the student’s 
completion process. As a result, the process of their conclusion was subsequently incorrect. 

 Conclusion   

From the results seen of the students’ work, it could be seen that the students 
experienced an inability to understand the definition of rational numbers. Student S1 had an 
error in constructing mathematical proof in the form of an example (i.e., 5/6). Therefore, the 
case containing the error was subsequently used by the student in compiling their 
mathematical proof. In understanding student S2 on the definition of rational numbers, the 
student was unable to numerically interpret a / b. They only understood that 1 / 2 and 5 / 10 
were rational numbers, whilst 2 or 0 whose divisors are 1 were not rational numbers. 
Likewise, student S3 made an error in operating, causing an error that occurred in the 

left  side 

right side 
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following step. Thus, the pattern of errors in mathematics proof can be identified such as 
insufficient initial knowledge about the definition of proof, and the difficulty of connecting 
the concepts of rational numbers when operating two rational numbers. 
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